Few-Shot Domain Adaptation For Many Class Classification Using Commercial Products
نویسندگان
چکیده
منابع مشابه
Few-Shot Adversarial Domain Adaptation
This work provides a framework for addressing the problem of supervised domain adaptation with deep models. The main idea is to exploit adversarial learning to learn an embedded subspace that simultaneously maximizes the confusion between two domains while semantically aligning their embedding. The supervised setting becomes attractive especially when there are only a few target data samples th...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملFew-shot Classification by Learning Disentangled Representations
Machine learning has improved state-of-the art performance in numerous domains, by using large amounts of data. In reality, labelled data is often not available for the task of interest. A fundamental problem of artificial intelligence is finding a representation that can generalize to never seen before classes. In this research, the power of generative models is combined with disentangled repr...
متن کاملZero-Shot Deep Domain Adaptation
Current state-of-the-art approaches in domain adaptation and fusion show promising results with either labeled or unlabeled task-relevant target-domain training data. However, the fact that the task-relevant target-domain training data can be unavailable is often ignored by the prior works. To tackle this issue, instead of using the task-relevant target-domain training data, we propose zeroshot...
متن کاملMeta-Learning for Semi-Supervised Few-Shot Classification
In few-shot classification, we are interested in learning algorithms that train a classifier from only a handful of labeled examples. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning algorithm is defined and trained on episodes representing different classification problems, each with a small labeled training set and its corres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Japan Society for Precision Engineering
سال: 2021
ISSN: 0912-0289,1882-675X
DOI: 10.2493/jjspe.87.78